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Abstract 

The purpose of this literature review is to examine what quantifies an elite STEM program, what 

criteria makes STEM education impactful for students, and where the future of STEM education 

may lie.  Integrated STEM is a key aspect of STEM education.  STEM perceptions and 

understandings must be clarified in order to move forward with STEM reform attempts.  

Learning by doing, using real-world contexts, is vital to the success of integrated STEM 

education.  Successful STEM learning environments must also focus on student engagement and 

motivation, as well as the incorporation of social-emotional and 21st century skills.  Teacher 

preparation and professional development cannot be forgotten when working towards best 

practices and the forward progression of STEM programs. 

 Keywords:  integrated STEM, student engagement, 21st century skills, teacher preparation  
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The Future of STEM Education 

STEM education is ill-defined, and even those involved in STEM-related careers often 

cannot adequately identify how STEM connects to their career, how they use STEM on a day-to-

day basis, or the impact STEM has on their given field (Breiner et al., 2012).  STEM education 

began in the 1990’s, with the STEM acronym being coined by the National Science Foundation 

(NSF) (Sanders, 2009).  Various theories and agendas over the past decades have not clearly 

defined STEM education, however the Next Generation Science Standards (NGSS) and 

Common Core are two recent reforms attempting to clarify and guide STEM education (Kelley 

& Knowles, 2016). 

DoD STARBASE seeks to provide a premier STEM educational program for fifth grade 

students historically underrepresented in STEM (DoD STARBASE, 2019).  The goal of the DoD 

STARBASE 25-hour program is to motivate students to explore future educational or career 

STEM opportunities through real-world explorations and experiences, including interactions 

with military personnel.  DoD STARBASE looks to engage students, provide inquiry-based 

curriculum, and “hands-on, minds-on” lessons in STEM with direct ties to the standards yet 

remain exciting and innovative. 

 The STEM acronym labels four distinct fields – science, technology, engineering, and 

mathematics (Sanders, 2009).  Although these four letters are linked together, historically the 

subjects continue to stand alone in education – even that labeled STEM education (Sanders, 

2009).  According to Sanders, integrated STEM education seeks to connect two or more STEM 

disciplines through various teaching and learning methods. 

 The Next Generation Science Standards (NGSS) are updated, research- and content-

based standards (expectations) for what students should know and be able to do (Next 
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Generation Science Standards, 2020).  These standards provide educators a direction to deliver 

learning experiences which stimulate student interest and prepare them for college, career, or 

social responsibility.  Common Core was drafted in 2009 as a list of college- and career-ready 

standards for math and English language arts from students from grades K-12 (Common Core 

State Standards Initiative, 2020).  The importance of Common Core was to create equally high 

standards consistent across the nation – clear expectations to match those of colleges and 

potential future employers. 

 The purpose of this literature review is to examine what quantifies an elite STEM 

program, what criteria makes STEM education impactful for students, and where the future of 

STEM education may lie – how STARBASE can continue to provide emerging STEM lessons 

and activities in an ever-changing world. 
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Literature Review 

What is STEM? 

Integrated STEM 

Current trends and reforms point toward integrated STEM as a key aspect of STEM 

education (Kelley & Knowles, 2016), and research supports this assertion.  The Next Generation 

Science Standards and Common Core Standards also affirm and encourage integration of STEM 

subjects (Kelley & Knowles, 2016).  Kelley and Knowles define integrated STEM as 

incorporating two or more STEM subjects and using STEM practices in an authentic context 

which connects the content in a way which supports student learning.   

STEM learning, using an integrated approach, acknowledges each subject can interact 

with and affect the others, which creates a view of STEM as an indivisible whole (Stergiopoulou 

et al., 2017).  Stohlmann et al. (2012) recognize integrated STEM allows teachers to focus on 

connections and big ideas which are interrelated between content areas.  Wang et al. (2011) 

clarify the difference between multidisciplinary integration and interdisciplinary integration.  

Wang et al. compares multidisciplinary integration to chicken noodle soup – different subjects 

are put together, yet the separate entities can still be identified, while interdisciplinary integration 

is compared to tomato soup – content areas are completely blended together.   

Integrated STEM can deepen student understanding by creating relevant contexts for 

learning (Wang et al., 2011).  Kelley and Knowles (2016) include relevant, stimulating, higher 

order critical thinking skills, problem-solving skills, and retention of learning as descriptive 

factors of STEM practices important to STEM education and integration of subject matter.  

Integrated STEM is also considered more relevant and stimulating as well as student-centered 

according to Stohlmann et al.  Stohlmann et al. additionally include the impact on higher-level 
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thinking and problem-solving skills, in addition to developing students to become innovators, 

inventors, self-reliant, logical thinkers, and technologically literate.  True integration uses real-

world problems, includes critical thinking, problem-solving skills, and making connections to 

relate to personal meaning (Wang et al., 2011) 

Even though STEM reform efforts strive to provide clarity for STEM integration 

(Common Core State Standards Initiative, 2020; Next Generation Science Standards, 2020), 

preservice teachers, STEM educators, and STEM specialists still lack understanding or fall short 

of the goal.  Radloff and Guzey (2016) surveyed preservice elementary STEM teachers and 

found only half defined or created a visualization which accurately integrated or connected the 

subjects, although almost all rated the STEM content areas as being connected.  According to 

Shernoff et al. (2017), a portion of the teachers interviewed had integrated STEM prior to their 

study.  Through interviews, Bell (2016) gathered statements from educators ranging from no 

knowledge of STEM, to surface identification of content areas, to full understanding and 

implementation of STEM.  Holmlund et al. (2018) found most educators (including staff in 

traditional settings, staff in STEM focused schools, administrators, and STEM 

specialists/trainers) described STEM as either integrated or interdisciplinary. 

In email responses to a question asking, “What is STEM?,” full-time faculty at the 

University of Cincinnati – amid a STEM movement including several initiatives – a portion 

disclosed they did not know or understand what STEM was (Breiner et al., 2012).  Many listed 

one of the four STEM content areas, while less than half correctly included all four subjects 

(Breiner et al., 2012).  Breiner et al. also found faculty mislabeled ‘M’ as medicine, used both 

math and medicine, or management.  ‘E’ was also mislabeled as electronics (Breiner et al., 

2012). 



THE FUTURE OF STEM EDUCATION  8 
 

STEM Perceptions 

Educators have varying viewpoints, perceptions, and attitudes towards STEM learning 

(Breiner et al., 2012; Wang et al., 2011).  In a study by Breiner et al. (2012), even full-time 

faculty at the University of Cincinnati, including some working in STEM fields, did not realize 

how they use STEM on a day-to-day basis.  A portion of staff surveyed stated STEM did not 

impact their lives, half listed personal connections to STEM through their careers, and a smaller 

number mentioned the connection STEM has to local, regional, national, or global societal issues 

(Breiner et al., 2012).   

In a study by Wang et al. (2011), three teachers participated in a year-long professional 

development program on the topic of STEM integration.  A sixth-grade math teacher, Nate, 

stated science, engineering, and math are all related – but only in the context of how STEM 

integration supported applying math skills in the real world (Wang et al., 2011).  According to 

Wang et al., Nate only saw the value of integration if he were able to collaborate with other 

teachers as his focus was on mathematical content.  Like Nate, many of those surveyed by 

Breiner et al. (2012) still compartmentalized STEM and other academic disciplines rather than 

making connections and working towards integration. 

Wang et al. (2011) found Nate’s colleagues on the other hand realized problem solving as 

a key aspect of STEM integration.  Wang et al. discovered Nate’s colleagues realized the need 

for student background knowledge in order to integrate subject matter and found integrating 

technology to be the most difficult.  Nate’s other colleague Amy discussed how science and math 

content knowledge helped students with engineering problem solving (Wang et al., 2011).  She 

found students thought more independently, were more confident in their learning, learned to 

communicate, and increased teamwork skills through STEM integration (Wang et al., 2011).  
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Amy also stated in the research of Wang et al. how STEM integration could support learning in 

other subjects but struggled with how to incorporate more content from various disciplines into 

her own lessons. 

Learning Theory  

STEM learning has roots in cognitive learning theory, and research like that by Holmlund 

et al. (2018) use the idea of sensemaking or construction of knowledge as their basis.  Holmlund 

et al. realized educators who put cognitive learning theory into practice employ real-world 

problem solving, authentic engagement, or opportunities for all students to participate in their 

implementation of curriculum.  Bell (2016) relied on work by Vygotsky in using experiences to 

guide student understanding and construction of knowledge.  Bell (2016) discovered the greater 

understanding and internalization of these theories of student construction of knowledge, the 

more likely secondary teachers were to provide true STEM education (active learning 

environment, learner focused, and problem solving), which ultimately fosters student learning.  

Kelly & Knowles (2016) regard situated cognition theory as a critical aspect of student learning 

– the physical and social context is directly tied to the development of knowledge.   

Other researchers, like Strawhacker and Bers (2019), base their research on Piaget’s 

constructivism – students using their senses, as well as physical objects, to build knowledge.  

Piaget’s ideas were then taken one step further by Papert and constructionism – using technology 

to create knowledge – and researchers Kazakoff et al. (2013) and Strawhacker and Bers (2019) 

explored the impact of computer programming on student learning.  Kazakoff et al. (2013) found 

programming robots made abstract ideas, specifically sequencing, more concrete for pre-

kindergarten and kindergarten students at a STEM magnet school in New York City after a one-

week workshop.  Strawhacker and Bers (2013) used a Scratch coding program with kindergarten 
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through second grade students and explored the impact on student spatial reasoning and causal 

logic.  Strawhacker and Bers (2013) found cognition and memory improved as the age of the 

student increased. 

Stergiopoulou et al. (2017) also relied on theories by Piaget and Papert in the use of 

educational robotics and their influence on student learning.  Sixth graders spent four hours with 

the program, and students constructed knowledge and developed critical thinking, as well as 

acknowledged the impact the robotics had on their math and science understanding 

(Stergiopoulou et al., 2017).  Papert’s learning by making theory similarly led Williams et al. 

(2008) to explore the benefits of a two-week summer robotics camp for middle school students.  

Williams et al. (2008) found the active role the students held, and collaboration, led to an 

increase in physics content knowledge. 

STEM Key Concepts 

Classroom 

Scientific Inquiry.  Scientific inquiry is defined as student activities which guide them 

towards knowledge construction and understanding of scientific ideas and how scientists study 

the natural world (Williams et al., 2008).  Kelley and Knowles (2016) utilize the phrase hands-

on, minds-on to describe true scientific inquiry as opposed to practical and procedurally based 

activities.  Williams et al. (2008) include skills like asking questions, planning and conducting 

investigations, using tools to gather data, logical and critical thinking, and communicating 

reasoning as important aspects of scientific inquiry.  Williams et al. (2008) specifically explored 

whether scientific inquiry skills could be increased through a two-week summer robotics camp in 

which middle school students were exposed to physics problem-based scenarios centered on 

topics including Newton’s Three Laws of Motion, but the increase observed was not significant.  
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Further research was recommended by Williams et al. (2008) to investigate whether further 

instruction, more exposure, or instructor training may impact the growth of scientific inquiry 

skills in students. 

Engineering Design.  The Next Generation Science Standards (2020) include scientific 

inquiry, more specifically engineering design, as one of the three important dimensions of 

learning science.  Engineering design is seen by Kelley and Knowles (2016) as the practice 

which can equally yoke all four STEM disciplines together through identifying commonalities 

and building connections.  Through learning by doing, applying science knowledge and inquiry 

(questioning, hypothesizing, and investigating), and supplying an authentic context, engineering 

design provides a systematic approach and platform necessary for scientific reasoning (Kelley & 

Knowles, 2016).  Shernoff et al. (2017) also describe engineering design as a connecting point 

for STEM which allows for problem solving, creative thinking, and communication and 

teamwork. 

One specific form of engineering design is known as purposeful design and inquiry 

(Sanders, 2009) or design-based learning (Vongkulluksn et al., 2018).  Sanders (2009) describes 

design and inquiry as combining technological design and scientific inquiry.  Vongkulluksn et al. 

(2018) studied the impact of design-based learning – designing artifacts in order to solve real-

world problems – on student self-efficacy.  Third through sixth grade students at an affluent, 

private school in southern California participated in a design-based makerspace challenge and 

were observed and interviewed by Vongkulluksn et al (2018).  Each student progressed through 

the six steps of the process – identifying needs and defining the problem (choosing a project with 

scaffolded support), researching, brainstorming possible solutions, choosing the best solution, 
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building a prototype, and sharing the prototype for feedback and modification – yet student 

frustration interfered with the process (Vongkulluksn et al., 2018). 

Problem Solving and Real-World Context.  Problem-based learning, project-based 

learning, inquiry-based learning, or experiential learning are all terms Shernoff et al. (2017) 

explored when interviewing K-12 STEM teachers and math/science supervisors who had 

previously attended a five-day integrated STEM Academy.  Although Shernoff et al. (2017) 

uncovered teacher needs and challenges which hindered implementation of problem-based 

learning in classrooms, the impact of student-centered learning design on student inventiveness, 

creativity, critical thinking, and logical thinking was desired by the educators as evidenced by 

their participation in the STEM Academy.   

Holmlund et al. (2018) interviewed and collected concept maps from teachers, 

administrators, and STEM educators, including teachers and administrators from Ridgeview 

STEM Academy, which includes project- or problem-based learning in their vision statement.  

Holmlund et al. (2018) found approximately half of the educators identified real-world problem 

solving and two-thirds of the educators identified problem- or project-based learning or 

engineering design challenges as key aspects of STEM education. 

Three teachers interviewed and observed by Wang et al. (2011) confirm the importance 

of real-world problem solving and context.  Nate – a sixth-grade math teacher – as reported by 

Wang et al. (2011), stated STEM allows students to realize how the mathematical skills one has 

and how one can apply the different mathematical concepts to solve real-world problems.  Nate 

gave the example of using knowledge of measurement of polygons to being applied to designing 

a package to fit an item (Wang et al., 2011).  Amy, a sixth through eighth grade engineering 

teacher, also used a real-world concept in her lesson planning – Wang et al. (2011) reported on 
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her chair unit where students combined science knowledge of body structures and mathematical 

measurements of a human body to design, budget for, and build chairs according to ratios. 

Beyond STEM.  Garner et al. (2018) incorporated other disciplines into their learning 

program.  Often, the arts are a key subject included into STEM learning and the acronym 

becomes STEAM (Garner et al., 2018).  Garner et al. (2018) also included concepts from social 

studies, civics, health and wellness, and life-skills and found students were able to identify and 

label skills learned after participating in the lessons.  As reported by Wang et al. (2011), Amy 

also included the art teacher, art concepts, and art students in the aesthetic design and construct 

of the chairs in her unit.  Wang et al. (2011) reiterated teacher beliefs that real-world problems 

naturally lead to integrated STEM education as most problems encountered in real life involve 

cross-disciplinary concepts. 

Social-Emotional Learning.  Garner et al. (2018) integrated social-emotional learning 

(SEL) concepts into the STEAM curriculum.  SEL skills include the ability to understand and 

regulate emotions, setting positive goals, understanding viewpoints of others, creating positive 

connections socially, responsible decision making, showing empathy, and navigating social 

challenges (Garner et al., 2018).  Each themed lesson focused on various STEAM concepts 

appealing to a variety of student interests with social challenges, collaboration, character 

development, or global citizenship concepts built into the lesson (Garner et al., 2018).  Kelley 

and Knowles (2016) also include the importance of learning in community, as communication 

and collaboration further the growth of student knowledge.  Wang et al. (2011) describe how 

working together makes learning more meaningful for students, and the practice of collaboration 

provides a connection for students to build upon in their learning.  Although Garner et al. (2018) 

specifically included SEL concepts, critique provided insight into the importance of explicit 
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versus implicit instruction of these skills.  Students need to be taught how a skill can directly 

support their progress towards a goal, and which specific skill may be needed to complete a 

particular activity (Garner et al., 2018).  Almost all students in the study by Garner et al. (2018) 

were able to at least one SEL skill they learned through the lesson(s), but instructors 

recommended students were given more time to reflect on how the SEL skill impacted their 

learning and to allow time for open dialogue about social-emotional concepts and their impact on 

learning, real-life problem solving, and future experiences students will encounter. 

Literacy.  In 2000 the International Technology Education Association (ITEA) defined 

technological literacy as the content students need for the 21st century in regards to technology – 

including both the objects or tools of technology as well as the impact technology has culturally, 

socially, economically, politically, or environmentally (Kelley & Knowles, 2016).  Sanders 

(2009) reiterates that integrated STEM education makes connections between science, math, and 

technology in order to guide students toward technological literacy which will support not only 

educational efforts, but also have an impact on the cultural and global competitiveness of 

students. 

Kazakoff et al. (2013) takes technological literacy one step further and defines digital 

literacy as skills used to find, evaluate, create, and communicate information.  Kazakoff et al. 

(2013) describe digital literacy as the combination of technological and cognitive skills – using 

computers to not only gather information, but also to understand and evaluate that information.  

Communication and collaboration, through the use of the internet or other technological tools, is 

also included in digital literacy according to Kazakoff et al. (2013). 

 Content Knowledge.  Literacy may ultimately result in an increase in student content 

knowledge.  Using the Think Like an Astronaut curriculum, Moreno et al. (2016) found a 
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significant increase in student content knowledge – even in areas not directly included in the 

research.  Kim et al. (2015) reported student growth in math, science, physics, engineering 

design, and STEM content knowledge through various STEM programs, although the change 

was not significant in their specific study.   

Student Engagement 

Perceptions and Attitudes.  Student perceptions and attitudes toward STEM also vary 

and change through exposure to STEM experiences.  The importance of incremental 

engagement, goal-based learning, situational learning, and inclusion of procedural knowledge 

was a key aspect of a study by Leonard et al. (2016).  Gomoll et al. (2016) describe the four 

phases of interest development which are the backbone for building student engagement.  The 

four phases include sparking student interest, retaining student interest, students asking and 

answering questions, and students working through challenges to gain feedback and reach goals 

(Gomoll et al., 2016).  Gomoll et al. (2016) also describe four types of engagement – behavioral 

or on task, social or collaboration, cognitive or task-related, and conceptual-to-consequential or 

applying knowledge to a given problem.  Yanowitz (2016) identified the importance of providing 

opportunities for students to be successful in STEM to raise student self-efficacy and 

engagement.  Yanowitz (2016) also stated observation of peer success also impacts student self-

efficacy.  Through the opportunity of solving various crime scene situations, Yanowitz (2016) 

created a camp experience where students could experience successful completion of science 

related tasks which also supported an increase in student self-efficacy. 

Shifts or Growth.  Identifying shifts in perceptions and attitudes can be difficult.  

Moreno et al. (2016) found that although student attitudes did not change significantly during 

their study using the Think Like an Astronaut curriculum, statements by teachers pointed to 
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positive increases in student mindsets.  Also in 2016, Leonard et al. found positive increases in 

student self-efficacy when using a combination of robotics building, coding, and writing code as 

well as a gaming curriculum which incorporated programming.  However, students involved in 

only the gaming curriculum saw a drop in self-efficacy scores.  Leonard et al. (2016) reported 

STEM attitudes towards science content grew but discovered a decline in student thoughts of 

math and engineering/technology.  Students who already have a high interest in STEM or future 

careers in a STEM discipline may not display positive self-efficacy growth due to high pre-test 

data and a ceiling effect limiting post-test growth scores or stable scores being observed (Stevens 

et al., 2016).  Although immediate feedback showed significant increases in student self-efficacy 

scores, in post-camp and follow-up surveys, Yanowitz (2016) discovered no significant change 

in self-efficacy, but students described more involvement in informal STEM activities including 

museums, literature, media, and activities due to their camp experience.  Students also expressed 

an increase in STEM content knowledge, more enjoyment and interest in STEM activities, 

increased self-confidence in STEM, the importance of creating new relationships and building 

social skills, as well as planning for STEM to be included in their future (Yanowitz, 2016). 

 Student Age.  Student age can also affect student perceptions and engagement with 

STEM.  Vongkulluksn et al. (2018) reported most students had positive responses to STEM 

activities, however younger students were more positive than older students, and showed less 

frustration with STEM challenges.  Carlone et al. (2014) also reported a decrease in student 

STEM interest as students grew older.  Over the course of two years, all students observed were 

described to be less scientific by Carlone et al. (2014).  Vongkulluksn et al. (2018) discovered 

student self-efficacy did not drop below the median, but did decrease over the course of their 

research, especially in higher grade levels.  Self-efficacy scores dropped significantly during the 
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first half of the semester but remained even during the second half of the semester, which could 

attributed to older students choosing more complex projects which led to higher frustration 

levels, incompletion of goals, and ultimately making poor judgements of self and ability 

(Vongkulluksn et al., 2018).  Vongkulluksn et al. (2018) pointed out younger students had a 

more optimistic outlook while older students were aware of what they could not do.  

Vongkulluksn et al. (2018) suggest earlier scaffolding and guidance in choosing appropriately 

challenging tasks could counter negative impact on student self-efficacy. 

 Teacher Impact.  Teachers and other mentors also affect student interest and self-

efficacy in STEM.  Carlone et al. (2014) described how fourth grade students who were 

encouraged to take risks and explore with curiosity, were urged to use scientific explanations, 

problem solving, collaboration, and sharing became more focused on getting the right answer 

and being good students when they reached sixth grade due to a more task-oriented approach to 

STEM curriculum.  Due to lower-level tasks, less hands-on experiences, and more lectures and 

worksheets, students were reported to lose their scientific identity (Carlone et al., 2014).  Stevens 

et al. (2016) stated mentor relationships were categorized highly by students and reported a 

student waiting list for participation in the STEM program.  Stevens et al. (2016) include the 

impact of caring adults among effective STEM practices as well as critical thinking, 

collaboration, real-world application, and hands-on learning.  Students were impacted by 

teachers to realize good and smart science students learn to think critically, solve problems, 

develop scientific explanations, and show care and understanding to their peers (Carlone et al., 

2014).  Yanowitz (2016) lists the need for trained instructors who can provide positive 

encouragement, as well as developing a program with low student-teacher ratios, as important to 

building student interest and future engagement with STEM. 
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Beyond the Classroom 

 Student self-efficacy directly affects future educational and career decisions as well as 

growth of important workforce skills.  Yanowitz (2016) identified the middle years of a student’s 

education as an important time in which career development can be affected.  Through research 

based on summer camp experiences, Yanowitz (2016) found more than half of students affirmed 

an impact on their career aspirations.  Mark (2016) listed the impact STEM programming had on 

student confidence, which directly impacted future educational course selection and career 

investigations.  Mark (2016) describes how on the job STEM training, including paid research 

intern positions, supported learning of transferable STEM skills.  Students were able to learn 

directly from STEM experts and mentors in various career fields (Mark, 2016).  These STEM 

mentors directly impacted student STEM career knowledge, exploration of specific STEM 

careers, knowledge of requirements for those specific careers, and educational planning (Mark, 

2016).  Connecting students with STEM professionals was also identified by Holmlund et al. 

(2018) as important for students in regard to career explorations. 

 Specifically, the need for 21st century skills is necessary for student trajectories into 

STEM fields.  Skills identified as beneficial in life and needed for professional competency 

include solving real-world problems, critical systems thinking, logical thinking, communication 

skills, collaboration skills, ownership of responsibility, and skills in areas of computers and 

programming (Smyrnova-Trybulska et al., 2017).  Holmlund et al. (2018) also include problem 

solving, collaboration, critical thinking, and communication skills as needed 21st century skills, 

but additionally list the importance of creativity, innovation, and perseverance.  Studying job 

skills, knowledge, and work activities, Jang (2016) identified adaptability, complex 

communication skills, problem solving, self-management and self-development, and systems 
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thinking as key areas students need to develop beyond specific STEM skills necessary for STEM 

career aspirations.  Specifically, Jang (2016) rated the following skills as high need:  active 

listening, speaking, decision making, time management, and social perceptiveness.  Knowledge 

skills Jang (2016) rated high include administration, management, and customer and personal 

service.  Work activities rated high include decision making, interacting with computers, and 

updating and using relevant knowledge (Jang, 2016).  Garner et al. (2018) also describe the 

importance of global citizenship development – developing students to be globally competent, 

socially responsible, and to have self- and social-awareness, relationship management skills, 

responsible decision making, time management, and collaboration skills. 

Examples of Integrated STEM 

Robotics 

 Robotics is one emerging field being incorporated into STEM learning environments 

which encompasses many of the themes discussed previously.  First, robotics lends itself to 

building knowledge and growing content area skills.  Kim et al., (2015) states how robotics 

activities and STEM content are effortlessly linked in the field of robotics.  Fifth through eighth 

grade students, in a study by Leonard et al. (2016), increased computational thinking skills, 

reinforced science subject matter, as well as learned engineering and technological skills while 

creating a game.  Robotics were also found to influence math literacy skills and the growth of 

science and technological information understanding (Smyrnova-Trybulska et al., 2017).  Kim et 

al. (2015) shared how robotics improved both elementary and middle school students’ math 

achievement and STEM knowledge, elementary students’ science achievement, and middle 

school students’ physics content knowledge.  Kazakoff et al. (2013) described robotics as a new 

form of manipulatives which can support student understanding of mathematical concepts.  Even 
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non-STEM content areas are impacted by robotics.  Kindergarten and pre-kindergarten students 

showed a significant increase in picture sequencing skills after taking part in a robotics and 

programming intervention using both physical and computer-based robotics blocks, while a 

control group showed no significant increase in the same skills (Kazakoff et al., 2013).  Kim et 

al. (2015) also reported a link between robotics and picture sequencing skills. 

 Student perceptions of STEM and engagement can also be affected by robotics learning.  

Students in research by Stergiopoulou et al. (2017) made STEM connections, recognized 

relationships among STEM subjects, and realized the value and importance each content area 

provided robotics curriculum.  Stergiopoulou et al. (2017) reported sixth graders enjoyed 

robotics activities and that math and science skills supported their learning.  Smyrnova-

Trybulska et al. (2017) also related how creating a robot kept students engaged and motivated, 

and even teachers even recognized the importance of self-motivation in the study.  The fact that 

robotics combines games with learning allows students to create a positive attitude about what 

they are learning (Stergiopoulou et al., 2017).  Gomoll et al. (2016) reported robotics held 

student interest and that students were engaged both cognitively and socially.  Behavioral 

engagement (students taking initiative and participating fully without distraction) and emotional 

engagement (including confidence boosts and greater interest in STEM) – described as 

autonomous motivation – were reported by Kim et al. (2015), as well as greater STEM interest, 

motivation, and self-confidence.  A decrease in negative emotions toward STEM was also 

reported by Kim et al. (2015). 

 Scientific inquiry, engineering design skills, and problem-solving skills are also 

benefitted by student robotics exposure.  Kim et al. (2015) discovered an increase in middle 

school students’ engineering design and problem-solving skills.  Middle school students were 
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exposed to this benefit at a summer camp, and researchers realized the need for knowledgeable 

instructors, a specific focus on the scientific inquiry process, and balancing free play and 

problem solving when using new materials in order to encourage students to remain focused 

(Williams et al., 2008).  Longer term experiences may also be beneficial according to Williams 

et al. (2008) rather than short-term camp exposure to these skills.  Gomoll et al. (2016) reported 

how project-based learning and solving real-world problems supported students in robotics 

programming.  Using the engineering design process, students were able to demonstrate 

understanding of and utilize portions of the engineering design process in varying degrees 

(define the problem, ask questions, imagine, collect information, develop and test ideas, explain 

reasoning, improve ideas) (Gomoll et al., 2016).  Leonard et al. (2016) reported growth of 

problem-solving skills in fifth through eighth grade students after building, coding to move, and 

writing advanced code for a robot. 

 Robotics also connects to social-emotional learning for students.  Stergiopoulou et al. 

(2017) lists an impact on student cooperation and trust between students and teachers.  Peer 

social interactions are can be cultivated using robotics stated Kazakoff et al. (2013).  Robotics 

supported social competencies, including communication and teamwork skills, according to 

Smyrnova-Trybulska et al. (2017).  Kim et al. (2015) also reported growth in communication and 

collaboration skills due to robotics learning.  Gomoll et al. (2016) specifically cites how human-

centered robotics may be important for connecting girls with STEM.  The emphasis robotics 

places on the social side of science and technology led teenagers in an after-school club towards 

social-emotional growth – including students taking on leadership roles they had not previously 

(Gomoll et al., 2016). 
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Lastly, robotics has been reported to lend itself to the growth of 21st century skills.  

Smyrnova-Trybulska et al. (2017) recorded a robotics connection to critical thinking, logical 

thinking, and critical systems thinking.  Spatial visualization skills and proportional reasoning 

increased in fifth through eighth grade students, according to Leonard et al. (2016).  Kim et al. 

(2015) reported students were more strategic, increased critical thinking skills, and had improved 

spatial ability and creative thinking after robotics programming.  Stergiopoulou et al. (2017) also 

stated sixth grade students developed critical thinking in their research. 

Coding 

 While coding is often incorporated into many robotics curriculums, stand-alone coding 

instruction also benefits student learning.  Strawhacker and Bers (2019) reported connections to 

student verbal, visual, causal, spatial, and social reasoning skills.  Tucker-Raymond et al. (2016) 

listed math literacy, problem solving, math reasoning and communication, and game design as 

student growth areas affected by coding instruction.  Other positive connections include concrete 

symbol recognition (letters and numbers) and working memory.  Strawhacker and Bers (2019) 

studied kindergarten through second grade students and recognized no gender-based differences 

when using Scratch Jr. coding but did identify how developmental stages impacted student 

success as student age increased.  The importance of using coding to perform a purposeful task 

or meet a goal was discussed by Strawhacker and Bers (2019).  High school students in research 

by Tucker-Raymond et al. (2016) applied coding to turn physical games into digital games for 

elementary students to practice learning concepts.  According to Tucker-Raymond et al. (2016), 

the cascading model of instruction used in their Young People’s Project (YPP) allows students 

from colleges, to high-schools, down to elementary-aged students to have access to STEM 

related content by removing traditional institutional barriers – students take ownership by 
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realizing they cannot teach something until they understand it themselves.  By creating new roles 

for students as not only learners, but also leaders, teachers, and organizers, the program fosters 

relationships and connections to the community as well as continued engagement and motivation 

for students (Tucker-Raymond et al., 2016). 

Future 

Teacher Preparation 

 The importance of teacher training is equally important in preparing students to follow 

STEM paths and providing quality STEM programming.  Radloff and Guzey (2016) concluded 

preservice STEM teachers require effective STEM instruction after researching STEM 

perceptions and understandings amongst current educators.  Wang et al. (2011) reported 

integrated STEM instruction often follows a path comfortable to the teacher, and by impacting 

beliefs and highlighting the purpose of STEM integration teacher practices will be affected.  

Research by Bell (2016) also concluded the necessity of training teachers in STEM subjects in 

order to produce qualified and motivated STEM educators.  Bell (2016) described four stages of 

STEM perception and understanding – external knowledge, internal engagement with 

knowledge, knowledge transferred to understanding, and synthesized knowledge for full 

understanding – and ultimately aims for STEM educators to progress towards the fourth stage in 

which they have confidence and students will learn through purposeful, engaging, creative, and 

active learning. 

Professional Development 

 Teachers often perceive barriers to providing quality STEM education.  Stohlmann et al. 

(2012) reported difficulties with time management, while lack of resources, poor student 

attitudes, student gaps in understanding or range of student abilities, lack of time for planning 
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and collaboration, and lack of administrative support were reported by Shernoff et al. (2017).  

Shernoff et al. (2017) also uncovered deficiencies in content knowledge, school organization or 

structure, absence of resources, financial limitations, and poor training as obstacles to providing 

integrated STEM instruction.  Stohlmann et al. (2012) found these barriers may lead to less 

commitment from educators, and suggests dedicated, organized, and knowledgeable teachers are 

needed who can be committed and supported with time for collaboration in order to find success. 

Staff build confidence through sharing ideas (Bell et al., 2018) which may come formally or 

informally.  Educators may rely on formal professional development, but opportunities may be 

limited and barriers of cost and time away hinder some staff from participating (Bell et al., 

2018).  Informal opportunities in the form of networking or independent research, including 

virtual opportunities, were also found to be effective by Bell et al. (2018).  Lack of collaboration 

can lead to division among colleagues or between content areas, but mutual respect leads to 

infinite learning possibilities with new STEM knowledge and best practices being voluntarily 

distributed (Bell et al., 2018).  The President’s Council of Advisors on Science and Technology 

(2010) incorporates the need for developing, employing, and rewarding high-quality STEM 

teachers who can create STEM experiences which engage all students.  The National Research 

Council (U.S.) (2011) list guidance which includes employing educators with strengths in 

content and pedagogy, valuing professional development, and empowering school leadership to 

initiate and influence change. 

Best Practices 

 Yanowitz (2016) identifies best practices to include student-centered lessons, inquiry 

learning, active participation including group learning, use of the scientific method, using data to 

support conclusions, and social construction of knowledge.  These characteristics were modeled 
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and described by Carlone et al. (2014) as equitable teacher qualities of scaffolding, holding high 

expectations of students, showing enthusiasm and pushing students further with questioning, 

encouraging explanation of ideas, and modeling social skills and empathy.  Mark (2016) based 

research on these same qualities – guiding students, providing access to challenging material, 

and allowing for social and academic peer interactions. 

Reform 

 The goal of STEM reform should be to promote learning, thinking, and interest in STEM 

(Kelley & Knowles, 2016).  Weis et al. (2015) reports reform should focus on instructional 

quality, overall attitudes and expectations, and course advisement rather than specific course 

offerings or sequencing.  The President’s Council of Advisors on Science and Technology 

(2010) also recommends students be prepared to have a strong STEM foundation for personal 

and professional applications and for students to be motivated and excited about STEM careers.  

The National Research Council (U.S.) (2011) also lists increasing STEM literacy and student 

interest and motivation as necessary conditions for successful STEM programming. Weis et al. 

(2015) testified to how current educational policies and structures can undermine reform 

attempts.  Low student proficiency scores, prerequisite course requirements, or goals (such as 

increased graduation rates) can take away from variety of or depth of courses offered (Weis et 

al., 2015) when students have reduced access to courses or when available resources are 

necessary to meet low-performing student needs rather than focus on STEM reform strategies.  

Both the National Research Council (U.S.) (2011) and the President’s Council of Advisors on 

Science and Technology (2010) recommend development of common standards and improved 

leadership or policy support to allow for STEM program growth. 

  



THE FUTURE OF STEM EDUCATION  26 
 

Future Research 

 Future recommended research includes the areas of STEM program material content, the 

balance of activities which will positively impact student motivation and interest, best practices 

for STEM instruction to support underrepresented or underserved students, as well as on the 

benefits of robust STEM teacher training.  First, research is needed to identify STEM activities 

which can be applied in settings with students of differing levels of ability – STEM 

programming which will allow for differentiation to meet the needs individual students.  Second, 

research which will identify an appropriate balance between exploration, free-play, and 

structured learning/application of scientific processes is needed to maintain student motivation 

and interest yet support learning of content area material.  Meeting the needs of and providing 

opportunities for underrepresented or underserved students is vital to removing barriers to their 

exploration of and participation in STEM learning and future STEM work trajectories.  Lastly, 

research to clarify and refine teacher training and staff development, which will best support 

educators to find success in integrated STEM classrooms and programs, is critical to STEM 

reform and the future of effective STEM education.  
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Conclusion 

 The aim of this literature review was to determine what quantifies an elite STEM 

program, what makes STEM education impactful for students, and where the future of STEM 

education may lie – to facilitate STARBASE in continuing to provide emerging STEM lessons 

and activities in an ever-changing world.  The importance of integrated STEM, and ensuring 

educators, students, and stakeholders understand and support the efforts of integrated STEM 

instruction is the first step towards successful STEM programming.  Learning by doing, using a 

constructionist approach, is vital to providing classroom experiences which support student 

exposure and growth in scientific inquiry skills, application of the engineering design process, 

problem solving (including real-world scenarios), social-emotional growth, content literacy, as 

well as understanding connections between and among not only STEM subject matter, but across 

all content areas.  Effective STEM curriculum will also engage student interest, keep students 

motivated, and build student self-efficacy.  Beyond the classroom, students will build 21st 

century skills which will impact future learning and preparation for society and careers.  Two 

specific examples of integrated STEM which currently stand out in STEM programming are 

robotics and coding.  These two areas can be a reference point for emerging trends in STEM 

fields and how to integrate them into student instruction.  Ongoing training for educators and 

proper preparation of new teachers is continually necessary so that instructors and programs 

remain effective and relevant for student learning.  In doing so, best practices and reform 

attempts will not be held at bay.  STARBASE will benefit from acknowledging and applying 

these findings in the continued development and implementation of superior STEM 

programming.  



THE FUTURE OF STEM EDUCATION  28 
 

References 

 Bell, D.  (2016).  The reality of STEM education, design and technology teachers’ perceptions:   

 A phenomenographic study.  International Journal of Technology and Design Education, 

 26(1), 61–79.  https://doi.org/10.1007/s10798-015-9300-9 

Bell, D., Morrison-Love, D., Wooff, D., & McLain, M.  (2018).  Stem education in the twenty-

first century:  Learning at work – an exploration of design and technology teacher 

perceptions and practices.  International Journal of Technology and Design 

Education, 28(3), 721–737. https://doi.org/10.1007/s10798-017-9414-3 

Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C.M.  (2012).  What is STEM?  A 

discussion about conceptions of STEM in education and partnerships.  School Science 

and Mathematics, 112(1), 3-11.  https://doi.org/10.1111/j.1949-8594.2011.00109.x 

Carlone, H.B., Scott, C. M., & Lowder, C.  (2014).  Becoming (less) scientific:  A longitudinal 

study of students’ identity work from elementary to middle school science.  Journal of 

Research in Science Teaching, 51(7), 836-869.  http://dx.doi.org/10.1002/tea.21150  

Common Core State Standards Initiative.  (2020).  Frequently asked questions.  Core Standards.  

http://www.corestandards.org/about-the-standards/frequently-asked-questions/ 

DoD STARBASE.  (2019).  Annual Report 2019:  Increasing diversity, equality, & inclusion in 

STEM.  DoD STARBASE.  https://dodstarbase.org/wp-content/uploads/19-27796-

STARBASE-ANNUAL-REPORT-FY2019-3-30-20-1.pdf 

Garner, P.W., Gabitova, N., Gupta, A., & Wood, T.  (2018).  Innovations in science education:  

Infusing social emotional principles into early STEM learning.  Cultural Studies of 

Science Education, 13(4), 889–903.  https://doi.org/10.1007/s11422-017-9826-0 



THE FUTURE OF STEM EDUCATION  29 
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